Pycraft’s Documentation
Release 9.5.7

Thomas Jebbo

Jan 30, 2023

CONTENTS

1 Introduction 3
L1 About o e e e e e 3
1.2 Setup e e 3
1.3 Running The Program L e 4
L4 Credits o o e e 5
1.5 Uncompiled Pycraft Dependencies i e 6
1.6 Changes o v v i e e e e e e e e e e 6
1.7 Understanding the release notes Lo e e e 7
1.8 Inputmapping e e e e e e e e e 7
1.9 OurUpdate Policy e e e e e e e e e e e 8
.10 Version Naming 0 0 i e e e e e e e e e e e e e 8
LIT Releases o o o i e e e e e e e e 8
112 Other SOUICES v it e e e e e e e e e e e e e e e e e e 9
1.13 Final Notices i e e e e e e e 9

2 Formatting Guide 11
2.1 Introduction e e e e e e e e e e e 11
2.2 Docstring Formatting Guide L e e 11
2.3 Module Formatting Guide e 12
2.4 Class Formatting Guide 0 0 e e e e e e e 12
2.5 Subroutine Formatting Guide L e e 12
2.6 Variable and Constant Formatting Guide, 12
2.7 Shader Formatting Guide e 12
2.8 Directory Formatting Guide e 12

3 Module Breakdown 13
3.1 OpenGL_window_benchmark 13
3.2 0 ANIE e e e e e e s 15
3.3 achievements e e e 15
34 benchmark e 15
3.5 benchmark_utils L e e e 16
3.6 blank_window_benchmark e 19
3.7 button_utils . . . L . e e e e e 20
3.8 camera_utils L L e e e e 25
3.9 caption_utilso L e e e e e e e e e 27
3.10 character_designer e e 28
3T credits o e e e e e e e e e e 29
3.12 custom_theme _utilS L L e e 30
3.13 directory_utils L L e e e e e e e e e e e e 30
3.14 display_utils e e e e e e 30

3,15 drawing_utils L L e e e e e e e e e e 33
3.16 drawing_window_benchmark L 33
3.7 dropdown_utils . . . oL L e e e e e e e e e e 35
3.18 error_utils . .. L L e e e 35
3.19 extended_benchmark e e 35
3.20 file utils . . .o L e e e 36
321 aME_eNZINE v e 36
322 hOME e e e e e e e e e e e e e 37
323 dmage_utils o e e e e e 38
324 input_utility L e 39
325 Anstall L 39
3.26 installer_home e e e e 39
3.27 installer_main L e e e e e e e e e e e 39
3.28 installer_utils L L e e e e 40
3.29 integrated_installer_utils L. oL e e e 40
330 INVENOTY . .« o o v vt e e e e e e e e e e e e e e e e 41
331 10oading_SCreen o i i it e e e e e e e 43
3.32 logging utils L e e e e e e e e e 44
333 MAIN e 47
334 map_gui ... oL 47
335 math_utils L e e e 48
336 menu_utilsS L e e e e e e 49
3.37 particle_utils e e e e e e e e e 49
338 pycraft_maino L e e e e e e e e e e 49
3.39 pycraft_startup_utils oL e 51
340 registry_utils . . . Lo L e 53
341 remapping_utils L e 54
342 SAVE_MENU . v v v v v v e e e e e e e e e e e s 54
3.43 seasonal_events_utils L L L L L e e e 54
344 setting preset_utils oL L 54
345 Settingso e e e 54
346 settings_utils e e 55
BAT SEHUD . o v v e e e e e e e e e e e e e e e e e e e 55
348 shader_utils L. e 55
3.49 shadow_mapping_utils L. e e e e e 55
3.50 slider_utils L e e e e e e e e e 56
3.51 sound_utils . . . oL L L e e e 56
3.52 startup_animation oL L e e e e e e e e e e e e 56
3.53 text_utilS e e e s 57
354 theme_gUi L e e e e e e e e e e e 57
3.55 theme_utils L e e e e 57
3.56 threading_utils e e e e e e 58
3.57 tkinter_utils L e e e e e e s 58
3.58 toggle_utils L e e e e e e e e 58
3.59 translation_utils L L L e e e 58
3.60 wuninstall L e e e e e e 58
3.61 updateo e 59
3.62 weather_utils L e e e 59
Frequently Asked Questions 61
4.1 Introduction L e e e e e e e 61
4.2 Frequently seen problems L e e e 61

Pycraft’s Documentation, Release 9.5.7

Pycraft is an OpenGL, open world, video game made with Python.

CONTENTS 1

Pycraft’s Documentation, Release 9.5.7

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 About

Pycraft is a 3D open-source, open-world video game made in Python. For a long time attempts to make large 3D games
in Python have been ignored, we believe there are two reasons: one; People use Python primarily for data handling
and processing and not graphics and, two; there is little to no documentation out there to do anything more than make
a 3D rotating cube in Python. Making a 3D game in Python for us hasn’t been an easy experience, far from it but we
have decided to share my project, complete with tutorials, explanations, articles and code explanations in the hope that
3D game development in Python can be seen as a more easily attainable target, and to fill that gap in documentation.
Pycraft then is a trial project, as we learn and experiment on what goes best where and how thing go together, this is
why development can sometimes appear to have stopped, because we are learning and testing what we have learned, so
hopefully for people in the future it will be an easier experience. Also, don’t forget there is more to game development
than just graphics, there is Al, sound, physics and all the other GUIs that go with it, and as we learn the quality of the
overall program will improve. Pycraft is not going to be the final name of the game, however until something better
becomes available, we shall stick to it.

1.2 Setup

1.2.1 Installing the project from GitHub (Method 1)

The project will download as a (.zip) compressed file. Please make sure you have the project decompressed before use.
Next make sure that any folders and files outside of the ‘Pycraft’ folder are removed and that the ‘Pycraft’ file is in the
intended place for the file to be run from. This file can be freely moved around, transported between drives, computers
and folders in this form!

Just make sure that if you plan to use the installer that you make sure the file location is correct after you have moved
the project, to do this simply remove everything in the ‘pycraft/Data*Files/InstallerConfig.json’ file and re-load the
game, it will try to repair the file and write the new path instead, during this process it may appear that Pycraft has
crashed as it will likely bring up an error message, a more user-friendly experience is coming soon*

When running the program please make sure you have a minimum of 1GB of free space on the drive and also have
Python 3.7 or above installed on your device. This can be found here: (www.python.org/downloads). The version of
Python isn’t too important in this circumstance however the project has been tested in Python 3.7 and above and is
known to work. In addition to all this please make sure you have the following modules installed on your device:

Pygame, Numpy, Pillow, PyAutoGUI, Psutil, PyWaveFront, CPUinfo, Ctypes, ModernGL, ModernGL*Window,
GPUtil, Pyrr, PyJoystick, Noise and Matplotlib.

For those not familiar they can be found here: (pypi.org).

You can use the following syntax to install, update and remove these modules:

Pycraft’s Documentation, Release 9.5.7

pip install <module> pip uninstall <module>

Here is a short video tutorial walk you through all this: (https://youtu.be/DG5YDbE-umwO0)

1.2.2 Installing the project from GitHub (Method 2)

If you are installing the project from the GitHub releases page or through Source Forge, then this will be relevant for
you. After you have selected your preferred file type (it’ll be either a compiled (.exe) file or a (.zip) file, those that
download the (.zip) file will find the information above more relevant.

If you, however, download the (.exe) type file, then this will be more relevant for you. If you locate the file in your file
explorer and double click it, then this will run the project. You do not need Python, or any of the projects required
modules, as they come built-in with this method. This method does also not install anything extra to your devise, to
remove the project, simply delete the (.exe) file in your file explorer. Please note that it can take a few moments for
everything in the (.exe) file to load and initialise, so nothing might not appear to happen at first. Also, you can only run
one instance of Pycraft at any time (even if you are using another method).

1.2.3 Installing from PyPi (preferred)

If you are installing the project from PyPi, then you will need an up-to-date build of Python (3.7 or greater ideally) and
also permission to install additional files to your device. Then you need to open a command-line interface (or CLI),
we recommend Terminal on Apple based devises, and Command Prompt on Windows based machines. You install the
latest version of Pycraft, and all its needed files though this command:

pip install Python-Pycraft
and you can also uninstall the project using the command:
pip uninstall Python-Pycraft

And now you can run the project as normal. Please note that at present it can be a bit tricky to locate the files that have
downloaded, you can import the project into another python file using:

import Pycraft

1.2.4 Installing using Pipenv

You can alternatively run these commands in the directory containing a file called Pipfile:
pip install pipenv then: pipenv install python-pycraft

And to start the game: pipenv run python <PATH to 'main.py'>

1.3 Running The Program

When running the program, you will either have a (.exe) file, downloaded from the releases page, or you will have the
developer preview, if you have the developer preview, which can be found in the files section of this repository then this
is how you run that program.

Now you have the program properly installed hopefully (you’ll find out if you haven’t promptly!) you need to locate
and run the file “main.py” if it crashes on your first run then chances are you haven’t installed the program correctly, if
it still doesn’t work then you can contact us. We do hope however that it works alright for you and you have a pleasant
experience. This program has been developed on a Windows 64-bit computer however should run fine on a 32-bit
Windows machine (uncompiled) or through MacOS although they remain untested for now.

4 Chapter 1. Introduction

https://youtu.be/DG5YbE-umw0

Pycraft’s Documentation, Release 9.5.7

We recommend creating a shortcut for the “main.py” file too so it’s easier to locate.

1.4 Credits

1.4.1 With thanks to;

Tom Jebbo (PycraftDeveloper) @ www.github.com/PycraftDeveloper

Count of Freshness Traversal @ www.twitter.com/DmitryChunikhin

Dogukan Demir (demirdogukan) @ www.github.com/demirdogukan

Henri Post (HenryFBP) @ www.github.com/HenryFBP

PyPi @ www.pypi.org

PIL (Pillow or Python Imaging Library) @ www.github.com/python-pillow/Pillow
Pygame @ www.github.com/pygame/pygame

Numpy @ www.github.com/numpy/numpy

PyAutoGUI @ www.github.com/asweigart/pyautogui

Psutil @ www.github.com/giampaolo/psutil

PyWaveFront @ www.github.com/pywavefront/Py Wavefront

Py-CPUinfo @ www.github.com/pytorch/cpuinfo

GPUtil @ www.github.com/anderskm/gputil

Tabulate @ www.github.com/p-ranav/tabulate

Moderngl @ www.github.com/moderngl/moderngl

Moderngl*window @ www.github.com/moderngl/moderngl-window

PyJoystick @ www.github.com/justengel/pyjoystick

Matplotlib @ www.github.com/matplotlib/matplotlib

FreeSound: - Erokia’s “ambient wave compilation” @ www.freesound.org/s/473545

FreeSound: - Soundholder’s “ambient meadow near forest” @ www.freesound.org/s/425368

FreeSound: - monte32’s “Footsteps*6*Dirt*shoe” @ www.freesound.org/people/monte32/sounds/353799

Freesound: - Straget’s “Thunder’ @ www.freesound.org/people/straget/sounds/527664/

Freesound: - FlatHill’s ‘Rain and Thunder 4’ @ www.freesound.org/people/FlatHill/sounds/237729/
Freesound: - BlueDelta’s ‘Heavy Thunder Strike - no Rain - QUADRO’

www.freesound.org/people/BlueDelta/sounds/446753/

@ -

Freesound: - Justkiddink’s ‘Thunder » Dry thunderl’ @ www.freesound.org/people/juskiddink/sounds/101933/

Freesound: - Netaj’s ‘Thunder’ @ www.freesound.org/people/netaj/sounds/193170/

Freesound: - Nimlos’ “Thunders » Rain Thunder’ @ www.freesound.org/people/Nimlos/sounds/359151/

Freesound: - Kangaroovindaloo’s ‘Thunder Clap’ @ www.freesound.org/people/kangaroovindaloo/sounds/585077/

Freesound: - Laribum’s “Thunder » thunder*01° @ www.freesound.org/people/laribum/sounds/353025/

Freesound: - Jmbphilmes’s ‘Rain » Rain light 2 (rural)’” @ www.freesound.org/people/jmbphilmes/sounds/200273/

1.4.

Credits

Pycraft’s Documentation, Release 9.5.7

1.5

Uncompiled Pycraft Dependencies

When you’re installing the uncompiled Pycraft variant from here you need to install the following ‘modules’, which can
be done through your Control Panel in Windows (First; press <windows key + r> then type “cmd” then run the below
syntax) or on Apple systems in Terminal.

pip install <module> pip uninstall <module>

pip is usually installed by default when installing Python with most versions.

PIL (Pillow or Python Imaging Library) @ www.github.com/python-pillow/Pillow
Pygame @ www.github.com/pygame/pygame

Numpy @ www.github.com/numpy/numpy

PyAutoGUI @ www.github.com/asweigart/pyautogui

Psutil @ www.github.com/giampaolo/psutil

PyWaveFront @ www.github.com/pywavefront/PyWavefront
Py-CPUinfo @ www.github.com/pytorch/cpuinfo

GPUtil @ www.github.com/anderskm/gputil

Tabulate @ www.github.com/p-ranav/tabulate

Moderngl @ www.github.com/moderngl/moderngl
Moderngl*window @ www.github.com/moderngl/moderngl-window
PyJoystick @ www.github.com/justengel/pyjoystick

Matplotlib @ www.github.com/matplotlib/matplotlib

Disclaimer; unfortunately, lots of these python modules (first and third party) can require some external modules that
will be installed during the installing process of the above modules, unfortunately this makes it really difficult to give
credit to those modules, if you have any recommendations, please contact me appropriately.

1.6

Changes

Pycraft v9.5.5 is now live! Here is a list of all the added features to this minor update:

Feature: We have extensively reworked the directory structure of Pycraft to make it more user friendly and easier
to find and access necessary files.

Feature: Pycraft has been entirely restructured to reduce the reliance on the ‘self” parameter to make Pycraft’s
source code easier to work with.

Feature: We have simplified events in Pycraft now so that they all use the same method of detecting them regard-
less of if you’re using Pycraft’s 2D or 3D engine.

Feature: We have changed the 3D windowing engine to match the 2D windowing engine to bring feature parity
and to make the transition between windowing engines easier. By doing this we managed to improve in game
performance, significantly simplify the method of sharing data between windowing engines, allow changes to
the new settings menu to control more of the 3D engine, and to allow changes to the settings in the settings menu
to be applied to the 3D engine without necessitating a restart.

Feature: We have added back in the Loading, Inventory and Map Uls, and all of them have been extensively
reworked and changed to be more featureful and behave better with the new 3D engine.

Feature: A new dropdown element in the settings menu has been added.

Chapter 1. Introduction

Pycraft’s Documentation, Release 9.5.7

Feature: We have used the new dropdown element for the settings menu to add in translations and adjustments
to the rendering resolution of Pycraft.

Bug-Fix: we have finished one of the most extensive pre-release testing processes yet - due to the large number
of changes we have made - and fixed a variety of known bugs, with a particular focus on the 3D engine, controller
compatibility and the installer.

Documentation: We have started the process of adding in docstrings to the start of every class, function and
procedure in Pycraft, and later this will extend to also include at the start of each module.

Documentation: We have completely restarted the documentation for Pycraft and will be using a new automated
method to make the process of compiling the new docstrings together and formatting them properly, in addition
to formatting this ReadMe automated for future ease of use. This has yet to be publicly released though.

Again, feedback would be much appreciated this update was released on; 23/12/2022 (date format; DD/MM/YYYY).
As always, we hope you enjoy this new release and feel free to leave feedback.

1.7

Understanding the release notes

This section will hopefully provide additional information on helping to read the release notes.

1.8

Points detailed after the “Feature” tag are what was focused on in the update and will likely always be present in
each update, often this is the most significant area of the update.

Points detailed after the “Bug-Fix” tag are likely to be the most frequent, they outline the most major bugs that
have been fixed in this update, although they are not the only bugs that have been fixed.

Points detailed after the “Performance” tag are used where there have been significant performance improvements
to the project.

Points detailed after the “Identified-Bugs” tag are bugs that have been identified in the project and that haven’t
been fixed as of writing the release notes, these are significant issues and will be fixed as soon as possible.

Points detailed after the final “Documentation” tag are indicators of significant improvements to the documenta-
tion. The “PEPS8” tag is used to signify that significant changes have been made to Pycraft to bring it in line with
the PEPS standards.

Input mapping

This section will be replaced with a dedicated file for keymapping as well as an in-game guide when this area of Pycraft
is completed.

1.8.1 Keyboard

Use W, A, S, D in game to move around, and use these keys in the map GUI to move that around.

Use SPACE to jump in game, reset your zoom in the map GUI, start the benchmark section, or press 10 times to
enter Devmode.

Use E in game to access your inventory
Use R in game to access the map
Use F11 to toggle full-screen

Use Q to access a resource value screen

1.7. Understanding the release notes 7

Pycraft’s Documentation, Release 9.5.7

* Use L in game to toggle locking your mouse (forcing it to stay in the window or not)

e Use X to exit Devmode

1.8.2 Mouse

* SCROLL in the map to zoom in/out, or to scroll the settings menu
* LEFT CLICK to select

A detailed map of inputs for keyboard and mouse or controller combinations is coming; for now, see the section below,
toggling between full-screen is currently not bound to a button on the controller because we will need all the different
buttons for gameplay

1.9 Our Update Policy

New releases will be introduced regularly, it is likely that there will be some form of error or bug, therefore unless you
intend to use this project for development and feedback purposes (Thank you all!) we recommend you use the latest
stable release; below is how to identify the stable releases.

1.10 Version Naming

Pycraft’s versions will always now follow the structure; “vA.B.C”
* Where “A” is the major revision number.
e Where “B” is the minor revision number.
e Where “C” is the patch and developer preview numbers (combined).

Every version of Pycraft as of the 27/10/2022 (DD/MM/YYY'Y) must feature all 3 values. Updates also now go se-
quentially, so Pycraft v9.6.4 is newer than Pycraft v9.5.7. If either of the “A” or “B” version numbers is incremented
in a release, documentation MUST be suitably updated, in addition Pycraft MUST be released on PyPi, SourceForge
and as a release on GitHub.

1.11 Releases

All past versions of Pycraft are available under the releases section of Pycraft, this is a new change, but just as before,
major releases like Pycraft v0.9 and Pycraft v0.8 will have (.exe) releases, but smaller sub-releases will not, this is in
light of a change coming to Pycraft, this should help with the confusion behind releases, and be more accommodating
to the installer that’s being worked on as a part of Pycraft v0.9.4. This brings me on to another point, all past updates to
Pycraft will be located at the releases page (Thats all versions), and the previous section on the home-page with branches
will change. The default branch will be the most recent release, then there will be branches for all the sub-releases to
Pycraft there too; and the sister program; Pycraft-Insider-Preview will be deprecated and all data moved to relevant
places in this repository, this should hopefully cut down on the confusion and make the project more user-friendly.

8 Chapter 1. Introduction

Pycraft’s Documentation, Release 9.5.7

1.12 Other Sources

We now post a roughly monthly article about Pycraft, showing behind the scenes, tips and tricks and additional in-
formation, this is shared to both Medium (medium.com/@PycraftDev) and Dev (dev.to/PycraftDev) and builds on the
regular posts we share to Twitter (twitter.com/PycraftDev) and Dev (dev.to/PycraftDev).

1.13 Final Notices

Thank you greatly for supporting this project simply by running it, we are sorry in advance for any spelling mistakes.
The program will be updated frequently and we shall do my best to keep this up to date too. we also want to add that
you are welcome to view and change the program and share it with your friends however please may we have some
credit, just a name would do and if you find any bugs or errors, please feel free to comment in the comments section
any feedback so we can improve my program, it will all be much appreciated and give as much detail as you wish to
give out.

1.12. Other Sources 9

mailto:medium.com/@PycraftDev

Pycraft’s Documentation, Release 9.5.7

10 Chapter 1. Introduction

CHAPTER
TWO

FORMATTING GUIDE

2.1 Introduction

Welcome to Pycraft’s new formatting guide! In this guide you will learn more about the structure that we follow in
the source code for Pycraft. To start with, it is not mandatory that this is read before you start work on Pycraft, and
nor os it a replacement for the excellent PEP-8 Guide for code formatting in Python - it is however an extension of this
concept. This guide aims to maintain a constant style of formatting through Pycraft and its sister projects (for example
the Installer), in order to make it easier to transfer from code written by one developer to another. If you are confused
by the structure of Pycraft, or by something in this guide then don’t hesitate to get in touch (ways of how to do so
can be found in the Introduction tab). Each area in this guide will feature a description, an example (likely not taken
from Pycraft for simplicity) - where relevant, our reasoning for this decision, any additional information regarding this
formatting feature in Pycraft’s source code and be preceeded by a text description about what that section of the guide
is for.

2.2 Docstring Formatting Guide

Welcome to Pycraft’s docstring formatting guide. Docstrings are a relatively recent addition to the source code of
Pycraft - only being introduced in Pycraft v9.5.5 as structural changes allowed for the use of docstrings to be effective -,
and act as text descriptions and overviews of the function of that area of code, as well as that area’s required parameters,
keyword arguments and outputs. Currently any subroutine (procedure or function) and class must have a docstring, with
the exception of a class instantiation method with no function; which can be identified as being identical to:

def __init__(self):
pass

It is crucial that for docstrings the correct format is used as the documentation gets built using an automated method
and incorrect foratting can create problems. So here are the set of rules for correctly formatting a docstring in Pycraft:

* All docstrings for Pycraft must be written in English (US ideally, but UK is fine too).

* Any dates must be given with the format used to create them, for example ‘released on the date: 12/07/2022
(using the DD/MM/YYYY format)’

* A docstring must - regardless of location - consist of a description that acts as an overview of what that code
does. There is no limit to the length of the description, although ideally it should be as detailed as possible so that
any reader does not need to check the actual code after reading the docstring description for futher information.
Additionally try to avoid just rewriting the code in plain english.

* Having a docstring at the start of a module in Pycraft isn’t currently required, however this is constantly being
reviewed.

11

Pycraft’s Documentation, Release 9.5.7

* The docstring corresponding to a class must not have a ‘- Output:” section. However the docstring for any
subroutine (except for the default instantiation method) must contain the © - Output:” description.

2.3 Module Formatting Guide

2.4 Class Formatting Guide

2.5 Subroutine Formatting Guide

2.6 Variable and Constant Formatting Guide
2.7 Shader Formatting Guide

2.8 Directory Formatting Guide

12

Chapter 2. Formatting Guide

CHAPTER
THREE

MODULE BREAKDOWN

3.1 OpenGL_window_benchmark

3.1.1 run_opengl_window_benchmark

This class is in charge of the OpenGL window benchmark seen in the benchmark section of Pycraft.
o Args:
— None
* Keyword Args:

— None

setup

This subroutine is in charge of loading the resources required by the OpenGL benchmark, including: 1x Texture 1x 3D
Scene 1x GLSL Shader And also sets the window parameters so that the OpenGL benchmark sets up in the same way
on all devices for consistency.

* Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

— wnd (BaseWindow): This is used by ModernGL_window as the display object to use for rendering and
additional resource loading.

» Keyword Args:
— None
e Qutput:
— texture (ModernGL_window Texture): This texture is rendered to the scene to add additional complexity.

— mvp (ModernGL_window Shader Attribute): This matrix is used to render the position and rotation of the
scene.

— light (ModernGL_window Shader Attribute): This attribute is used to shade the scene based on the position
of the camera.

— vao (ModernGL VertexArray): This is the scene we render (a cube).

— timer (float): This is used to keep track of how long this section of the benchmark has been running for,
and is used in calculating the rotation of our scene.

13

Pycraft’s Documentation, Release 9.5.7

start

aspect_ratio (float): This float represents the aspect ratio we want our display to be rendering at.

This subroutine is used to render the OpenGL window benchmark, accessible when run through the benchmark section
of Pycraft. This test is the final of 3 tests designed to test different aspects of your hardware. This stresses your GPU
as well as your CPU and this is often the most difficult benchmark to run.

e Args:

self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

iteration (int): In the benchmarking process, iteration is used to keep track of how long the benchmark has
been running

Setfpslength (int): This is the length of the ‘Setfps’ array, we use this instead of specifying an integer in
order to allow us to make changes later on in Pycraft’s development about how many targets to use for the
benchmark section.

Setfps (array): This is an array of integers that stores FPS targets for the benchmark section of Pycraft, with
each element being a different FPS to try to reach, getting progressively harder. The FPS from this array is
updated every 500 iterations of the benchmark.

fpscounter (int): This is used to store the index used to calculate the next element in the ‘Setfps’ array, this
is used so Pycraft know’s what to set the FPS to next, and what to set the caption to so that it displays the
current FPS being tested.

Maxiteration (int): This is used to calculate after how many iterations we move onto the next targeted FPS,
currently this is set to increase the FPS every 500 ‘iteration’s.

ctx (Context object): This is used by ModernGL for loading OpenGL resources and enabling access to
OpenGL features.

texture (ModernGL_window Texture): This texture is rendered to the scene to add additional complexity.

mvp (ModernGL_window Shader Attribute): This matrix is used to render the position and rotation of the
scene.

light (ModernGL_window Shader Attribute): This attribute is used to shade the scene based on the position
of the camera.

vao (ModernGL VertexArray): This is the scene we render (a cube).

timer (float): This is used to keep track of how long this section of the benchmark has been running for,
and is used in calculating the rotation of our scene.

aspect_ratio (float): This float represents the aspect ratio we want our display to be rendering at.

* Keyword Args:

None

e Qutput:

fpslistX (array): Used to store the iteration of the benchmark. This correlates to a point, with this making
up the X coordinate and ‘fpslistY’ making up the Y coordinate. These points are later plotted (after a bit
of processing) in the benchmark results screen on a line graph.

fpslistY (array): Used to store the FPS at a given iteration of the benchmark. This correlates to a point,
with this making up the Y coordinate and “fpslistX’ making up the X coordinate. These points are later
plotted (after a bit of processing) in the benchmark results screen on a line graph.

14

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

3.2 __init__
3.3 achievements

3.3.1 generate_achievements

This class is in charge of rendering of the achievements GUI.
o Args:
— None
» Keyword Args:

— None

achievements_gui

This subroutine does the bulk rendering of the achievements GUIL
e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

» Keyword Args:
— None
e Qutput:

— None

3.4 benchmark

3.4.1 generate_benchmark
This class does the bulk of the rendering for the benchmark start and results section and also manages the running and
execution of the benchmark.
e Args:
— None
* Keyword Args:

— None

3.2. _init__ 15

Pycraft’s Documentation, Release 9.5.7

benchmark_gui
This subroutine does the bulk of the rendering for the benchmark start and results section and also manages the running
and execution of the benchmark.

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

3.5 benchmark_utils

3.5.1 close_benchmark
This class is in charge of switching back from the benchmark UI to Pycraft and making sure that the benchmark engine
is reset so it behaves as expected next time the user goes to open up the benchmark menu.
o Args:
— None
* Keyword Args:

— None

exit_benchmark
This procedure is in charge of switching back from the benchmark UI to Pycraft and making sure that the benchmark
engine is reset so it behaves as expected next time the user goes to open up the benchmark menu.

o Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

16 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

3.5.2 start benchmark

This class is in charge of creating and setting up the different environments used for each component of the graphics
benchmark. This is done so that they all start with the same starting conditions to make the tests fair for comparison
between different stages of the benchmark, and also between different devices running this benchmark.

o Args:
— None
* Keyword Args:

— None

generate_benchmark

This function does the bulk of the setup that you would find between different areas of the graphics benchmark to make
sure that each test is repeatable and setup in the same way.

o Args:
— None
* Keyword Args:

— create_display (bool): This option controls wether a Pygame surface object should be created or not. Often
if a Pygame surface object isn’t created here then it will be in the ‘generate_opengl_benchmark’ function
which is below this.

e Output:

— set_fps (array): This is an array of integers that stores FPS targets for the benchmark section of Pycraft,
with each element being a different FPS to try to reach, getting progressively harder. The FPS from this
array is updated every 500 iterations of the benchmark.

— set_fps_length (int): This is the length of the ‘set_fps’ array, we use this instead of specifying an integer in
order to allow us to make changes later on in Pycraft’s development about how many targets to use for the
benchmark section.

— display (Pygame Surface | None): The display object is used throughout Pycraft. This is the identifier we
use when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine
used in Pycraft. OR If the keyword parameter ‘create_display’ is set to False, then None is returned.

— iteration (int): In the benchmarking process, iteration is used to keep track of how long the benchmark has
been running.

— fps_counter (int): This is used to store the index used to calculate the next element in the ‘set_f{ps’ array,
this is used so Pycraft know’s what to set the FPS to next, and what to set the caption to so that it displays
the current FPS being tested.

— max_iteration (int): This is used to calculate after how many iterations we move onto the next targeted FPS,
currently this is set to increase the FPS every 500 ‘iteration’s.

3.5. benchmark_utils 17

Pycraft’s Documentation, Release 9.5.7

generate_opengl_benchmark
This function handles the specific setup for any OpenGL benchmark environment. This is still used in partnership with
‘generate_benchmark’ however does extend its functionality with OpenGL specific data.
e Args:
— None
» Keyword Args:
— None
* Output:

— display (Pygame Surface | None): The display object is used throughout Pycraft. This is the identifier we
use when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine
used in Pycraft. OR If the keyword parameter ‘create_display’ is set to False, then None is returned.

— ctx (Context object): This is used by ModernGL for loading OpenGL resources and enabling access to
OpenGL features.

— wnd (BaseWindow): This is used by ModernGL_window as the display object to use for rendering and
additional resource loading.

3.5.3 clear_benchmark
This class is in charge of running a simple spacer to act as a gap between each of the graphics benchmarks. This is
used as a time to reset arguments between each test, although that is not handled here.
o Args:
— None
* Keyword Args:

— None

run_spacer
This procedure is in charge of running a simple spacer to act as a gap between each of the graphics benchmarks. This
is used as a time to reset arguments between each test, although that is not handled here.

* Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

— display (Pygame Surface): The display object is used throughout Pycraft. This is the identifier we use
when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine used in
Pycraft.

— background_color (array): An array containing the RGB colour values used to represent the colour of the
background to the window at this time.

— clock (Clock): The clock object is used by Pygame as a way of controlling the frame-rate and other frame-
rate specific functions. We use this to limit the FPS throughout Pycraft.

* Keyword Args:

— None

18 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

* Output:

None

3.6 blank_window_benchmark

3.6.1 run_blank_window_ benchmark

This class is in charge of the blank window benchmark seen in the benchmark section of Pycraft.

* Args:

None

* Keyword Args:

start

None

This subroutine is used to render the blank window benchmark, accessible when run through the benchmark section of
Pycraft. This test is one of three designed to stress your system. This one is usually considered the ‘baseline’ as it is
the easiest to run.

e Args:

self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

iteration (int): In the benchmarking process, iteration is used to keep track of how long the benchmark has
been running

set_fps_length (int): This is the length of the ‘set_fps’ array, we use this instead of specifying an integer in
order to allow us to make changes later on in Pycraft’s development about how many targets to use for the
benchmark section.

set_fps (array): This is an array of integers that stores FPS targets for the benchmark section of Pycraft,
with each element being a different FPS to try to reach, getting progressively harder. The FPS from this
array is updated every 500 iterations of the benchmark.

fps_counter (int): This is used to store the index used to calculate the next element in the ‘set_fps’ array,
this is used so Pycraft know’s what to set the FPS to next, and what to set the caption to so that it displays
the current FPS being tested.

max_iteration (int): This is used to calculate after how many iterations we move onto the next targeted FPS,
currently this is set to increase the FPS every 500 ‘iteration’s.

display (Pygame Surface): The display object is used throughout Pycraft. This is the identifier we use
when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine used in
Pycraft.

* Keyword Args:

None

* Qutput:

fps_list_X (array): Used to store the iteration of the benchmark. This correlates to a point, with this making
up the X coordinate and “fps_list_Y’ making up the Y coordinate. These points are later plotted (after a bit
of processing) in the benchmark results screen on a line graph.

3.6. blank_window_benchmark 19

Pycraft’s Documentation, Release 9.5.7

— fps_list_Y (array): Used to store the FPS at a given iteration of the benchmark. This correlates to a point,
with this making up the Y coordinate and “fps_list_X’ making up the X coordinate. These points are later
plotted (after a bit of processing) in the benchmark results screen on a line graph.

3.7 button_utils

3.7.1 draw_setting_elements

This class is in charge of rendering the button element that you can see used in the settings menu for Pycraft. Please
note that the use of ‘self” in this module is purely as a way to make changes to variables in Pycraft, and is not/should
not be used in any other way for simplicity.

* Args:
— None
* Keyword Args:

— None

draw_multi_buttons

This function is in charge of rendering the multi-button element (where multiple options can be selected) that you can
see used in the settings menu for Pycraft. Please note that the use of ‘self” in this module is purely as a way to make
changes to variables in Pycraft, and is not/should not be used in any other way for simplicity.

e Args:

self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

button_pos (int): This is used to store the Y coordinate of the buttons position onscreen, so that elements
can be rendered in the correct place.

— button_text_array (array): This array stores a sequence of 1 or more strings that will be used to title each
button.

— font (Pygame Font): This parameter stores the font that will be used by default to render any text supplied
to the function.

— backup_font (Pygame Font): This parameter stores the font that will be used to render text supplied to this
function when the default font can’t be used. (likely due to limited support for some characters).

— argument_variable (str): This parameter represents the dictionary key for the variable that this function
modifies, for example, if the variable using self was used it may look like ‘self.variable_name’, then this
parameter would be ‘variable_name’.

— hovering (bool): This parameter is used so that the setting menu knows when the user is hovering over a
setting.

— mouse_over (bool): This parameter is used to tell the settings menu when to display information messages
for an option (often then the user’s mouse is hovering over a setting, although the functionality for this is
different to the ‘hovering’ parameter).

— scrollbar_needed (bool): This parameter controls when the graphic this function draws should be offset to
allow for a scroll-bar to be rendered.

— aa (bool): This controls wether anti-aliasing should be used when rendering font.

20 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

— font_color (tuple): This tuple controls which colour the font should be rendered with and is also the colour
that the graphic will turn when it is currently being overed over. This is adjustable through the theme
selection menu.

— display (Pygame Surface): The display object is used throughout Pycraft. This is the identifier we use
when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine used in
Pycraft.

— mouse_x (int): This stores the current X position of the user’s cursor relative to the top-left corner of the
window

— mouse_y (int): This stores the current Y position of the user’s cursor relative to the top-left corner of the
window

— accent_color (tuple): This tuple controls which colour the graphic should be rendered with, when that
option is enabled.

— shape_color (tuple): This tuple controls which colour the graphic should be rendered with, by default.

— platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.

— use_mouse_input (bool): This parameter tells the function wether the user is using a keyboard and mouse,
or a controller to interact with the element onscreen, as this can change how the element should detect
events.

— sound (bool): This input controls wether the element onscreen should play a sound when it is interacted
with.

— theme (str): This parameter represents what theme the user has currently selected.

— sound_volume (float): This parameter controls the volume at which should should be played at when the
element is interacted with.

— settings_preset (str): This parameter controls which pre-set settings the user has chosen to use, this can
be either ‘low’, ‘medium’, ‘high’ or ‘adaptive’, where each option focuses on either performance or visual
quality in game.

— themeAurray (array): This parameter stores all of the information needed to adjust the theme the user has se-
lected, including ‘font_color’, ‘background_color’, ‘shape_color’, ‘accent_color’, ‘secondary_font_color’
for each of the 3 available themes.

— background_color (array): This array stores the RGB colour value used to represent the background colour
of the element (this should be the same as the background colour to the rest of the window)

— secondary_font_color (tuple): This parameter stores the second font colour that can be used to add greater
effect to a widget, for example better showing when an option is disabled.

— fps (float): This is the frame rate the game is targeted to try and run at. This is not a guaranteed value and
should represent the maximum frame rate the game should be allowed to run at.

— render_fog (bool): This controls the rendering of fog effects in game, disabling this setting can improve
performance, but lower visual quality.

— fancy_graphics (bool): This controls the rendering of more complex visual effects that serve only to look
good, so that the user can control performance or visual quality.

— fancy_particles (bool): This controls the rendering of higher quality particles in game, so that the user can
control performance or visual quality.

— average_fps (float): This stores the cumulative achieved frame rate from the last 1000 game cycles. This
can be used then to calculate an average frame rate.

3.7. button_utils 21

Pycraft’s Documentation, Release 9.5.7

iteration (int): This counter is used to count up to 1000, and is used to calculate an average frame rate for
those 1000 samples. Then this counter gets reset to 1 (to avoid ZeroDivisionError).

mouse_button_down (bool): This parameter controls when the user has opted to select an option, and
although this can be remapped, it often represents when the user clicks on the onscreen element.

language (str): This procedure contains a list of all the supported languages Pycraft can be translated into.

logging_dictionary (dict): This dictionary is used to tell this subroutine if information messages are to be
logged, this can be adjusted in settings.

output_log (bool): This option tells the subroutine if logged messages should also be outputted to the
console.

translated_text (dict): This dictionary stores all the text that has been previously translated (like a cache).
This improves performance and reduces the number of calls to external language servers (google translate).
All text that is to be translated must first check this dictionary!

connection_permission (bool): This parameter controls wether Pycraft is allowed to connect to the internet.
This can then be used to control a range of features, for example text translations and checking for updates
to Pycraft.

* Keyword Args:

None

* Output:

button_text_height + 20 (int): This output represents the vertical height of the onscreen element, so that
the next setting can be rendered below it. We add 20 as a form of padding between setting options, and this
represents 20 pixels.

hovering (bool): This parameter is used so that the setting menu knows when the user is hovering over a
setting.

mouse_over (bool): This parameter is used to tell the settings menu when to display information messages
for an option (often then the user’s mouse is hovering over a setting, although the functionality for this is
different to the ‘hovering’ parameter).

fps (float): This is the frame rate the game is targeted to try and run at. This is not a guaranteed value and
should represent the maximum frame rate the game should be allowed to run at.

aa (bool): This controls wether anti-aliasing should be used when rendering font.

render_fog (bool): This controls the rendering of fog effects in game, disabling this setting can improve
performance, but lower visual quality.

fancy_graphics (bool): This controls the rendering of more complex visual effects that serve only to look
good, so that the user can control performance or visual quality.

fancy_particles (bool): This controls the rendering of higher quality particles in game, so that the user can
control performance or visual quality.

average_fps (float): This stores the cumulative achieved frame rate from the last 1000 game cycles. This
can be used then to calculate an average frame rate.

iteration (int): This counter is used to count up to 1000, and is used to calculate an average frame rate for
those 1000 samples. Then this counter gets reset to 1 (to avoid ZeroDivisionError).

themeArray (array): This parameter stores all of the information needed to adjust the theme the user has se-
lected, including ‘font_color’, ‘background_color’, ‘shape_color’, ‘accent_color’, ‘secondary_font_color’
for each of the 3 available themes.

22

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

font_color (tuple): This tuple controls which colour the font should be rendered with and is also the colour
that the graphic will turn when it is currently being overed over. This is adjustable through the theme
selection menu.

background_color (array): This array stores the RGB colour value used to represent the background colour
of the element (this should be the same as the background colour to the rest of the window)

shape_color (tuple): This tuple controls which colour the graphic should be rendered with, by default.

accent_color (tuple): This tuple controls which colour the graphic should be rendered with, when that
option is enabled.

secondary_font_color (tuple): This parameter stores the second font colour that can be used to add greater
effect to a widget, for example better showing when an option is disabled.

theme (str): This parameter represents what theme the user has currently selected.

mouse_button_down (bool): This parameter controls when the user has opted to select an option, and
although this can be remapped, it often represents when the user clicks on the onscreen element.

translated_text (dict): This dictionary stores all the text that has been previously translated (like a cache).
This improves performance and reduces the number of calls to external language servers (google translate).
All text that is to be translated must first check this dictionary!

draw_buttons

This function is in charge of rendering the chained button element (where only one option can be chosen) that you can

see used in

the settings menu for Pycraft. Please note that the use of ‘self” in this module is purely as a way to make

changes to variables in Pycraft, and is not/should not be used in any other way for simplicity.

e Args:

button_pos ():

self ():
button_text_array ():
font ():

value ():
backup_font ():
argument_variable ():
hovering ():
mouse_over ():
files_to_remove ():
clear_languages ():
scanned_files ():
scrollbar_needed ():
font_color ():

aa ():

display ():

mouse_x ():

3.7. button_utils 23

Pycraft’s Documentation, Release 9.5.7

mouse_y ():

sound ():
accent_color ():
shape_color ():
platform ():
base_folder ():
remove_file_permission
settings_preset ():
fps ():

render_fog ():
fancy_graphics ():
fancy_particles ():
average_fps ():
iteration ():
use_mouse_input ():
sound_volume ():
themeArray ():

background_color ():

secondary_font_color ():

language ():
logging_dictionary ():
output_log ():

translated_text ():

connection_permission ():

* Keyword Args:

None

e Qutput:

— button_text_height + 20 ():

hovering ():
mouse_over ():
fps ():

aa():

render_fog ():
fancy_graphics ():
fancy_particles ():

average_fps ():

24

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

iteration ():
themeArray ():
font_color ():
background_color ():
shape_color ():

accent_color ():

secondary_font_color ():

translated_text ():

3.8 camera_utils

3.8.1 compute_camera

NYI

e Args:

None

* Keyword Args:

None

e Qutput:

None

camera_move_state

NYI

* Args:

camera ():
direction ():
activate ():
RIGHT ():
LEFT ():
FORWARD ():
BACKWARD ():
UP ():

DOWN ():
STILL ():
POSITIVE ():
NEGATIVE ():

* Keyword Args:

3.8. camera_utils

25

Pycraft’s Documentation, Release 9.5.7

— None
e Qutput:

— None

get_camera_values

NYI
e Args:
- self ():
— camera ():

— camera_up ():

— compile_math ():

— STILL ():
— POSITIVE ():
— NEGATIVE ():
* Keyword Args:
— None
e Qutput:
— cam_matrix ():

— position ():

compute_camera_dir

NYI
e Args:
- self ():
— camera ():
— POSITIVE ():
— NEGATIVE ():
* Keyword Args:
— None
e Qutput:
— None

26

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

3.9 caption_utils

3.9.1 generate_captions

NYI
e Args:
— None
* Keyword Args:
— None
e Qutput:

— None

get_loading_caption

NYI
* Args:
— version ():
— num ():
* Keyword Args:
— None
* Output:

— None

get_normal_caption

NYI
* Args:

— location ():

— detailed_captions ():

— play_time ():

- x():

-yO:

-z(:

— total_move_x ():
— total_move_y ():
— total_move_z ():
— fps_overclock ():
— current_fps ():

— iteration ():

3.9. caption_utils

27

Pycraft’s Documentation, Release 9.5.7

version ():

current_memory_usage ():

theme ():
fps O:
average_fp ():

* Keyword Args:
— None
* Output:

— None

set_OpenGL_caption

NYI
e Args:

self ():

play_time ():

Time_Percent ():

day ():

total_move_x ():

total_move_y ():

total_move_z ():

weather ():

* Keyword Args:
— None

e Qutput:

— None

3.10 character_designer

3.10.1 generate_character_designer

This class is in charge of rendering the character customiser GUI, currently this is just a black window as we need to
get the game engine right and work on a character model, in later versions the character will hopefully be rendered in
3D and the result (as well as any changes), should be able to be viewed live.

* Args:
— None
* Keyword Args:

— None

28 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

character_designer_gui

This subroutine does the bulk of the rendering for the character customiser GUI, currently this is just a black window
as we need to get the game engine right and work on a character model, in later versions the character will hopefully
be rendered in 3D and the result (as well as any changes), should be able to be viewed live.

o Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

3.11 credits

3.11.1 generate_credits

This class is in charge of creating the credits menu from a file called ‘credits_config.json’ in the ‘data files’ folder.
o Args:
— None
* Keyword Args:

— None

credits_gui

This subroutine is in charge of creating the credits menu from a file called ‘credits_config.json’ in the ‘data files’ folder.
Every key has a purpose, with the ‘<spacerN>" syntax being used to specify any spaces or breaks to make the credits
menu easier to read. (The ‘N’ being used to count the number of spaces as without this the spacer gets ignored.)

e Args:
— None

* Keyword Args:
— None

e Qutput:

— None

3.11. credits 29

Pycraft’s Documentation, Release 9.5.7

3.12 custom_theme_utils

3.12.1 draw_setting_elements

draw_custom_theme_options
3.13 directory_utils

3.13.1 draw_setting_elements

draw_directory_structure

3.14 display_utils

3.14.1 display_functionality

This class is in charge of handling calls to subroutines, as well as enabling basic GUI functionality to Pycraft, this is
called by many GUISs and is heavily customisable. This is designed to simplify GUI design and make it easier to roll
out some changes to every GUI in Pycraft.

* Args:
— None
* Keyword Args:

— None

core_display_functions

This subroutine is in charge of the basic functionality you would expect from Pycraft’s GUIs, it handles events, mouse
and controller positions, as well as allowing for great customisability, meaning its designed to be called by most GUI’s
and be flexible enough to be functional.

e Args:

platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.

— display (Pygame Surface): The display object is used throughout Pycraft. This is the identifier we use
when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine used in
Pycraft.

— use_mouse_input (bool):
— average_fps (float):

— iteration (int):

— mouse_x (int):

— mouse_y (int):

x_scale_factor (float):

30 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

y_scale_factor (float):
go_to (str):

joystick_exit (bool):
joystick_hat_pressed (bool):
window_in_focus (bool):
saved_window_width (int):
saved_window_height (int):
clock (Pygame Clock):
sound (bool):

input_key (dict):

input_configuration (dict):

extended_developer_options (bool):

logging_dictionary (dict): This dictionary is used to tell this subroutine if information messages are to be

logged, this can be adjusted in settings.

output_log (bool): This option tells the subroutine if logged messages should also be outputted to the

console.

vsync (bool):

window_icon (Pygame Surface): This is the icon we use in the caption (and in the taskbar on some supported

OS’) for Pycraft.
sound_volume (float):
variable_data (dict):

version (str)

Pycraft’s current version.
background_color (tuple):
font_color (tuple):

fullscreen (bool):
startup_animation (bool):
run_timer (float):
data_average_fps (arr):
data_CPU_usage (arr):
data_current_fps (arr):
data_memory_usage (arr):
timer (float):
data_average_fps_Max (float):
data_CPU_usage_Max (float):

data_current_fps_Max (float):

data_memory_usage_Max (float):

3.14. display_utils

31

Pycraft’s Documentation, Release 9.5.7

joystick_zoom (str):

mouse_button_down (bool):

error_message (str):

error_message_detailed (str):
* Keyword Args:
— location="home” (str):

— checkEvents=True (bool):

resize=True (bool):

return_events=False (bool):

disable_events=False (bool):
* Qutput:
— displayEvents (arr):

— display (Pygame Surface): The display object is used throughout Pycraft. This is the identifier we use
when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine used in
Pycraft.

— mouse_button_down (bool):
— go_to (str):

— startup_animation (bool):
— run_timer (float):

— current_fps (float):

— average_fps (float):

— iteration (int):

— saved_window_width (int):
— saved_window_height (int):
— window_in_focus (bool):

— joystick_exit (bool):

— x_scale_factor (float):

— y_scale_factor (float):

— real_window_width (int):
— real_window_height (int):
— mouse_x (int):

— mouse_y (int):

— data_average_fps (arr):

— data_CPU_usage (arr):

— data_current_fps (arr):

— data_memory_usage (arr):

— timer (float):

32 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

data_average_fps_Max (float):
data_CPU_usage_Max (float):

data_current_fps_Max (float):

joystick_zoom (str):

clock (Pygame Clock):

— joystick_hat_pressed (bool):

— fullscreen (bool):

— joystick_connected (bool):
3.14.2 display_utils
update_display
set_display
generate_min_display
get_display_location
get_play_status
3.14.3 display_animations
fade_in

fade_out

3.15 drawing_utils

3.15.1 draw_rose
create_rose
3.15.2 generate_graph

create_devmode_graph

3.16 drawing_window_benchmark

3.16.1 run_drawing_window_benchmark

data_memory_usage_Max (float):

This class is in charge of the drawing window benchmark seen in the benchmark section of Pycraft.

* Args:

3.15. drawing_utils

33

Pycraft’s Documentation, Release 9.5.7

— None
* Keyword Args:

— None

start

This subroutine is used to render the drawing window benchmark, accessible when run through the benchmark section
of Pycraft. This test is the second of three designed to stress your system. This one is usually used to measure the
performance of CPU rendering with Pygame on your device.

e Args:

self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

— iteration (int): In the benchmarking process, iteration is used to keep track of how long the benchmark has
been running

— Setfpslength (int): This is the length of the ‘Setfps’ array, we use this instead of specifying an integer in
order to allow us to make changes later on in Pycraft’s development about how many targets to use for the
benchmark section.

— Setfps (array): This is an array of integers that stores FPS targets for the benchmark section of Pycraft, with
each element being a different FPS to try to reach, getting progressively harder. The FPS from this array is
updated every 500 iterations of the benchmark.

— fpscounter (int): This is used to store the index used to calculate the next element in the ‘Setfps’ array, this
is used so Pycraft know’s what to set the FPS to next, and what to set the caption to so that it displays the
current FPS being tested.

— Maxiteration (int): This is used to calculate after how many iterations we move onto the next targeted FPS,
currently this is set to increase the FPS every 500 ‘iteration’s.

— display (Pygame Surface): The display object is used throughout Pycraft. This is the identifier we use
when we want to interact with/draw to/update Pycraft’s gui. Pygame is the main windowing engine used in
Pycraft.

* Keyword Args:
— None
e Qutput:

— fpslistX (array): Used to store the iteration of the benchmark. This correlates to a point, with this making
up the X coordinate and ‘fpslistY’ making up the Y coordinate. These points are later plotted (after a bit
of processing) in the benchmark results screen on a line graph.

— fpslistY (array): Used to store the FPS at a given iteration of the benchmark. This correlates to a point,
with this making up the Y coordinate and “fpslistX’ making up the X coordinate. These points are later
plotted (after a bit of processing) in the benchmark results screen on a line graph.

34 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

3.17 dropdown_utils

3.17.1 draw_setting_elements

draw_dropdown
3.18 error_utils

3.18.1 generate_error_screen

error_screen

3.19 extended benchmark

3.19.1 Loadbenchmark

This class is in charge of loading and running the 3 window benchmarks in the correct order and returning the results
of each run back to the benchmark GUI for processing.

e Args:
— None
* Keyword Args:

— None

run
This subroutine is in charge of loading and running the 3 window benchmarks in the correct order and returning the
results of each run back to the benchmark GUI for processing.
e Args:
— None
* Keyword Args:
— None
e Qutput:

— fps_list_x_1 (array): Used to store the iteration of the benchmark. This correlates to a point, with this
making up the X coordinate and ‘fps_list_y_1" making up the Y coordinate. These points are later plotted
(after a bit of processing) in the benchmark results screen on a line graph.

— fps_list_y_1 (array): Used to store the FPS at a given iteration of the benchmark. This correlates to a point,
with this making up the Y coordinate and ‘fps_list_x_1" making up the X coordinate. These points are later
plotted (after a bit of processing) in the benchmark results screen on a line graph.

— fps_list_x_2 (array): Used to store the iteration of the benchmark. This correlates to a point, with this
making up the X coordinate and ‘fps_list_y_2’ making up the Y coordinate. These points are later plotted
(after a bit of processing) in the benchmark results screen on a line graph.

3.17. dropdown_utils 35

Pycraft’s Documentation, Release 9.5.7

— fps_list_y_2 (array): Used to store the FPS at a given iteration of the benchmark. This correlates to a point,
with this making up the Y coordinate and ‘fps_list_x_2’ making up the X coordinate. These points are later
plotted (after a bit of processing) in the benchmark results screen on a line graph.

— fps_list_x_3 (array): Used to store the iteration of the benchmark. This correlates to a point, with this
making up the X coordinate and ‘fps_list_y_1" making up the Y coordinate. These points are later plotted
(after a bit of processing) in the benchmark results screen on a line graph.

— fps_list_y_1 (array): Used to store the FPS at a given iteration of the benchmark. This correlates to a point,
with this making up the Y coordinate and ‘fps_list_x_3’ making up the X coordinate. These points are later
plotted (after a bit of processing) in the benchmark results screen on a line graph.

3.20 file utils

3.20.1 delete files
clear_temporary_files
3.20.2 scan_folder
search_files

3.20.3 fix_installer
set_install_location
get_install_location
3.20.4 pycraft_config_utils
read_input_key
read_main_save
repair_lost_save

save_pycraft_config
3.21 game_engine

3.21.1 create_game_engine

This class is responsible for the setup, loading and running of the game engine.
o Args:
— None
* Keyword Args:

— None

36 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

start
This subroutine is responsible for telling ModernGL and ModernGL_window that our Pygame display is to be rendered
to.
e Args:
— None
» Keyword Args:
— None
* Output:

— ctx (Context object): This is used by ModernGL for loading OpenGL resources and enabling access to
OpenGL features.

— wnd (BaseWindow): This is used by ModernGL_window as the display object to use for rendering and
additional resource loading.

game_engine

This subroutine is responsible for loading and running Pycraft’s game engine.
e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

3.22 home

3.22.1 generate_home
This class is in charge of loading the resources used in the main menu of Pycraft. (Alternatively also called the ‘title
screen’ or ‘home screen’) This class is also in charge of rendering the main menu.
* Args:
— None
* Keyword Args:

— None

3.22. home 37

Pycraft’s Documentation, Release 9.5.7

create_banner
This subroutine is used to render the messages the user may see at the bottom of the home screen. This is run in parallel
(thread).

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

home_gui

This subroutine is in charge of loading the resources used in the main menu of Pycraft. (Alternatively also called the
‘title screen’ or ‘home screen’) This subroutine is also in charge of rendering the main menu.

o Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

» Keyword Args:
— None
* Output:

— None

3.23 image_utils

3.23.1 convert_image
pil_image_to_surface
surface_to_pil_image

3.23.2 pygame_image_extensions
display_to_string

3.23.3 transparency_effects
create_background_image

3.23.4 tkinter_installer

38 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

open_img
3.24 input_utility

3.24.1 identify_hex
3.24.2 identify_text

3.24.3 identify_rgb

3.25 install

3.25.1 begin_install
install_screen_one
button_check
install_screen_two
get_dir
install_screen_three
render_progress_bar
install_screen_four
desktop_is_checked
start_is_checked
toggle_release_notes

on_exit
3.26 installer home

3.26.1 installer_home
start

get_version

3.27 installer_main

3.27.1 run_installer

3.24. input_utility 39

Pycraft’s Documentation, Release 9.5.7

__init__
Initialize

3.28 installer utils

3.28.1 get_installer_data

get_data

3.28.2 core_installer_functionality
close

home

outdated_detector

3.28.3 file_manipulation

move_files

download_and_install

search_files

remove _files

3.29 integrated_installer_utils

3.29.1 integrated_installer

This class is in charge of connecting the installer and Pycraft together. This class is used to check for updates to Pycraft.

o Args:
— None
* Keyword Args:

— None

40

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

check versions
This subroutine runs the command “pip list —outdated’ in a thread. The results of this command are then processed to
check of Pycraft is outdated. This is run in parallel (thread).

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

3.29.2 check_connection

This class is used to check if your PC has a working network connection so that updates can be checked for successfully.
e Args:
— None
* Keyword Args:

— None

test

This subroutine attempts to ping google’s servers. If this is successfully it means there is currently an internet connection
to your PC. This is not run in a thread, so therefore there is a 1 second timeout. This means that if there isn’t an internet
connection available it doesn’t slow down Pycraft’s startup too much.

* Args:
— None

* Keyword Args:
— None

* Output:

— (bool): This subroutine will return True if an internet connection can be established. If an internet connec-
tion could not be established, nothing is returned.

3.30 inventory

3.30.1 generate_inventory

This class is in charge of setting up, managing, loading and running the inventory GUI. This GUI gets loaded as a
separate process at the start of the game engine and runs only when the game engine sends a command. This is run in
parallel (process).

e Args:

3.30. inventory 41

Pycraft’s Documentation, Release 9.5.7

— None
* Keyword Args:

— None

__init__

This class is in charge of turning the dictionary the user enters as a parameter (that contains all the data required to
properly display the inventory GUI) into a ‘generate_inventory’ object in a similar style to the ‘pycraft_main’ program.
This also initializes the inventory’s required modules.

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

— dictionary (dict): This parameter holds all the data that is stored as ‘self” in the game engine. This includes
the configuration and user defined settings. Note that the input to this variable must be sorted first to remove
any modules or module specific objects. For example a (Pygame Surface) type object as that will cause
errors when creating the new process.

* Keyword Args:
— None
* Output:

— None

inventory_gui

This subroutine is in charge of loading and running the inventory GUI. This GUI gets loaded as a separate process at

the start of the game engine and runs only when the game engine sends a command. This is run in parallel (process).
o Args:

— dictionary (dict): This parameter holds all the data that is stored as ‘self” in the game engine. This includes
the configuration and user defined settings. Note that the input to this variable must be sorted first to remove
any modules or module specific objects. For example a (Pygame Surface) type object as that will cause
errors when creating the new process.

— start_inventory (Multiprocessing Event object): This parameter is an event object used to tell the inventory
when the game engine wants to have the inventory displayed. When this event is not set the inventory will
wait.

* Keyword Args:
— None
e Qutput:

— None

42 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

3.31 loading_screen

3.31.1 generate_load_screen

This class is in charge of setting up, managing, loading and running the loading GUI. This GUI gets loaded as a separate
process at the start of the game engine and runs whilst the game engine loads to indicate that Pycraft hasn’t crashed
and how far through loading the game engine we are. This is run in parallel (process).

* Args:
— None
» Keyword Args:

— None

__init__

This class is in charge of turning the dictionary the user enters as a parameter (that contains all the data required to
properly display the loading screen GUI) into a ‘generate_load_screen’ object in a similar style to the ‘pycraft_main’
program. This also initializes the load screen’s required modules.

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

— dictionary (dict): This parameter holds all the data that is stored as ‘self” in the game engine. This includes
the configuration and user defined settings. Note that the input to this variable must be sorted first to remove
any modules or module specific objects. For example a (Pygame Surface) type object as that will cause
errors when creating the new process.

* Keyword Args:
— None
e Qutput:

— None

load

This subroutine is in charge of loading and running the loading GUI. This GUI gets loaded as a separate process at
the start of the game engine and runs whilst the game engine loads to indicate that Pycraft hasn’t crashed and how far
through loading the game engine we are. This is run in parallel (process).

o Args:

— dictionary (dict): This parameter holds all the data that is stored as ‘self” in the game engine. This includes
the configuration and user defined settings. Note that the input to this variable must be sorted first to remove
any modules or module specific objects. For example a (Pygame Surface) type object as that will cause
errors when creating the new process.

— start_loading (Multiprocessing Event object): This parameter is an event object used to tell the load screen
when the game engine starts to load. When this event is not set the load screen will wait to be called again.

» Keyword Args:

— None

3.31. loading_screen 43

Pycraft’s Documentation, Release 9.5.7

* Output:

— None

3.32 logging_utils

3.32.1 create_log_message

This class adds logging support to Pycraft.
* Args:
— None
* Keyword Args:
— None
e Qutput:

— None

update_log_information
This subroutine handles the formatting, output and logging of all non-critical information. This can be a handy debug-
ging tool.

e Args:

— logging_dictionary (dict): This dictionary is used to tell this subroutine if information messages are to be
logged, this can be adjusted in settings.

— text (str): This string contains the piece of information to log.

— output_log (bool): This option tells the subroutine if logged messages should also be outputted to the
console.

— platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.
* Keyword Args:

— None
* Output:

— None

44 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

update_log_warning
This subroutine handles the formatting, output and logging of all non-critical warnings that could cause errors if not
dealt with during the execution of Pycraft. This can be a handy debugging tool.

e Args:

— logging_dictionary (dict): This dictionary is used to tell this subroutine if warning messages are to be
logged, this can be adjusted in settings.

— text (str): This string contains the piece of information to log.

— output_log (bool): This option tells the subroutine if logged messages should also be outputted to the
console.

— platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.
* Keyword Args:

— None
e Qutput:

— None

update_log_error

This subroutine handles the formatting, output and logging of all critical errors in Pycraft. These must be dealt with
immediately and will stop the execution of Pycraft, or could cause some things to not behave as expected.

o Args:

logging_dictionary (dict): This dictionary is used to tell this subroutine if error messages are to be logged,
this can be adjusted in settings.

text (str): This string contains the piece of information to log.

output_log (bool): This option tells the subroutine if logged messages should also be outputted to the
console.

platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

base_folder (str): This string is a file path to the resources for Pycraft on your device.
* Keyword Args:

— None
* Output:

— None

3.32. logging_utils 45

Pycraft’s Documentation, Release 9.5.7

3.32.2 log_file

This class handles the writing to and formatting of the log file.
o Args:
— None
* Keyword Args:
— None
e Qutput:

— None

clear_log

This subroutine clears the log file. This is often called at startup to prevent the log file becoming too long.
o Args:

— platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.
* Keyword Args:

— None
* Qutput:

— None

update_log
This subroutine updates the log file by appending new information to the end. This is usually called every time a log is
made.

e Args:

— platform (str): This string tells the subroutine which operating system we are using. This is needed for OS
specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.
— text (str): This string contains the formatted log which will be added to the log.

* Keyword Args:
— None

* Output:

— None

46 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

3.33 main

3.34 map_gui

3.34.1 generate_map_qgui

This class is in charge of setting up, managing, loading and running the map GUI. This GUI gets loaded as a separate
process at the start of the game engine and runs only when the game engine sends a command. This is run in parallel
(process).

* Args:
— None
* Keyword Args:

— None

__init__

This class is in charge of turning the dictionary the user enters as a parameter (that contains all the data required to
properly display the map GUI) into a ‘generate_map_gui’ object in a similar style to the ‘pycraft_main’ program. This
also initializes the map’s required modules.

o Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

— dictionary (dict): This parameter holds all the data that is stored as ‘self” in the game engine. This includes
the configuration and user defined settings. Note that the input to this variable must be sorted first to remove
any modules or module specific objects. For example a (Pygame Surface) type object as that will cause
errors when creating the new process.

* Keyword Args:
— None
e Qutput:

— None

get_map_pos

This maths based subroutine is used to calculate the position the map should be rendered onscreen.
e Args:
— in_x (float): This parameter represents the user’s position in game on the X axis.
— in_z (float): This parameter represents the user’s position in game on the Z axis.
* Keyword Args:
— None
e Qutput:

— X (int): The X coordinate to render the map.

3.33. main 47

Pycraft’s Documentation, Release 9.5.7

— z (int): The Y coordinate to render the map. (In 2D space there is no “Z’ or depth axis, therefore because
we don’t care about the user’s height position here, we use their Z position in 3D space to represent their Y
coordinate in 2D space.)

map_gui

This subroutine is in charge of loading and running the map GUI. This GUI gets loaded as a separate process at the
start of the game engine and runs only when the game engine sends a command. This is run in parallel (process).

e Args:

— dictionary (dict): This parameter holds all the data that is stored as ‘self” in the game engine. This includes
the configuration and user defined settings. Note that the input to this variable must be sorted first to remove
any modules or module specific objects. For example a (Pygame Surface) type object as that will cause
errors when creating the new process.

— start_inventory (Multiprocessing Event object): This parameter is an event object used to tell the inventory
when the game engine wants to have the inventory displayed. When this event is not set the map will wait.

* Keyword Args:
— None
e Qutput:

— None

3.35 math_utils

3.35.1 math_functions
gl_look_at

normalize
compute_position
perspective_fov

look_at

multiply

3.35.2 compiled_math_functions
gl_look_at
compute_position
normalize

perspective_fov

48 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

look at

multiply

3.36 menu_utils
3.36.1 access_other_guis
access_gui

3.37 particle_utils
3.37.1 particles

emit_gpu

gen_particles

projection
3.38 pycraft_main

3.38.1 startup

This class is used to make sure Pycraft starts up and initializes properly.

e Args:
— None
* Keyword Args:

— None

__init__

This class initializes Pycraft, this class also creates the ‘self’ dictionary used throughout Pycraft.

* Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
* Output:

— None

3.36. menu_utils

49

Pycraft’s Documentation, Release 9.5.7

3.38.2 Initialize

This class is used to start Pycraft. It is also responsible for ‘connecting’ you to different menus and making sure Pycraft
starts up correctly.

e Args:
— None
» Keyword Args:

— None

menu_selector
This subroutine is used to transfer you between different GUIs and programs used in Pycraft. This is also used to make
sure that different menus in Pycraft get everything they need in order to start properly.

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
e Qutput:

— None

start

This subroutine is used as the default start-up option for Pycraft. This will initialize a display, create all the variables
(by using an earlier subroutine in this module) and get Pycraft ready for handing over to the main menu (home). Calling
this subroutine starts Pycraft.

* Args:
— None

* Keyword Args:
— None

* Output:

— None

QueryVersion

This subroutine can be used to return the current version of Pycraft. Version Naming Pycraft’s versions will always
now follow the structure; “vA.B.C” * Where “A” is the major revision number. * Where “B” is the minor revision
number. * Where “C” is the patch and developer preview numbers (combined). Every version of Pycraft as of the
27/10/2022 (DD/MM/YY YY) must feature all 3 values. Updates also now go sequentially, so Pycraft v9.6.4 is newer
than Pycraft v9.5.7. If either of the “A” or “B” version numbers is incremented in a release, documentation MUST be
suitably updated, in addition Pycraft MUST be released on PyPi, SourceForge and as a release on GitHub.

o Args:

— None

50 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

* Keyword Args:
— None
* Output:

— version (str): Pycraft’s current version.

start
This subroutine is responsible for starting Pycraft, this can be used to call Pycraft externally, potentially as part of
another program.
* Args:
— None
* Keyword Args:
— None
e Qutput:

— None

3.39 pycraft_startup_utils

3.39.1 startup_test
This class is in charge running checks on your hardware and Pycraft’s file structure to make sure any problems with
incorrect file paths are identified quickly and you get the best experience on your hardware.
e Args:
— None
* Keyword Args:
— None
e Qutput:

— None

test for_resource
This subroutine checks a given file path to see if the resource it is expecting to find is present. If a resource is not at the
required location then an error is returned.
e Args:
— base_folder (str): This string is a file path to the resources for Pycraft on your device.
— name (str): This is the name of the file we are trying to find.
— path (str): This is the path from the ‘pycraft’ directory to where we are expecting the file to be.
* Keyword Args:
— None

* Output:

3.39. pycraft_startup_utils 51

Pycraft’s Documentation, Release 9.5.7

— error_message (str) OR None: If an error occurs whilst navigating to the required file path (potentially
a folder may have moved) or the file we where expecting to find is not present then ‘error_message’ is
returned. If no problems occur and the resource is found then ‘None’ gets returned.

— error_message_detailed (str) OR None: If an error occurs whilst navigating to the required file path
(potentially a folder may have moved) or the file we where expecting to find is not present then ‘er-
ror_message_detailed’ is returned. If no problems occur and the resource is found then ‘None’ gets re-
turned. This output contains more details about exactly what error has occured and can be enabled

— for testing or debug purposes usually

— in the settings menu. This is a handy debugging tool.

resource_not_found

This subroutine creates the error message that gets returned if a resource is not at its expected location.
o Args:
— name (str): This is the name of the file we are trying to find.
— path (str): This is the path from the ‘pycraft’ directory to where we are expecting the file to be.
» Keyword Args:
— None

e Qutput:

error_message (str): If an error occurs whilst navigating to the required file path (potentially a folder may
have moved) or the file we where expecting to find is not present then ‘error_message’ is returned.

error_message_detailed (str): If an error occurs whilst navigating to the required file path (potentially a
folder may have moved) or the file we where expecting to find is not present then ‘error_message_detailed’
is returned. This output contains more details about exactly what error has occured and can be enabled

for testing or debug purposes usually

in the settings menu. This is a handy debugging tool.

pycraft_self_test
This subroutine compares the minimum requirements of Pycraft to the specs of your hardware to see if we can run
Pycraft on your PC. Specs:

* OpenGL v2.8 or newer (potentially needs to be reviewed).

* SDL v2 or newer.

* 260 MB of RAM or more (potentially need to be reviewed).

e Args:

— window_icon (Pygame Surface): This is the icon we use in the caption (and in the taskbar on some supported
0S’) for Pycraft.

* Keyword Args:
— None
e Qutput:

— None

52 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

pycraft_resource_test

This subroutine is in charge of checking for every resource required by Pycraft to make sure that it is where Pycraft will
expect it to be when it is required by other areas of the game. Any problems raised here may mean something is wrong
with the structure of Pycraft. Problems here after an update or when you first install Pycraft can indicate an error with
the install. This is run in parallel (thread).

e Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

— override (bool): This is used to forcefully run ‘pycraft_resource_test’. This is used to allow the user to
check for problems in the settings menu (in the ‘Storage and permissions’ section).

» Keyword Args:
— None
e Qutput:

— None

3.40 registry_utils

3.40.1 generate_registry
This class is in charge of setting all the default values, and making sure every variable defined in ‘self’ exists, reducing
the risk of errors because variables are not defined. This is sorted alphabetically.
e Args:
— None
* Keyword Args:
— None
* Output:

— None

registry

This subroutine is in charge of setting all the default values, and making sure every variable defined in ‘self” exists,
reducing the risk of errors because variables are not defined. This is sorted alphabetically. This must always be called
at startup (in ‘pycraft_main’).

o Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
* Output:

— None

3.40. registry_utils 53

Pycraft’s Documentation, Release 9.5.7

3.41 remapping_utils

3.41.1 draw_setting_elements

draw_remap_function

3.42 save _menu

3.42.1 generate_save_menu

save_menu_gui

3.43 seasonal_events utils

3.43.1 configure_seasonal_event

is_seasonal_event

3.44 setting_preset_utils

3.44.1 presets

update_profile
3.45 settings

3.45.1 generate_settings

This class is in charge of loading the structure for the settings menu, and rendering the settings menu properly.

e Args:
— None
* Keyword Args:

— None

restart_function

This subroutine adds restarting functionality into Pycraft. To do this we run a command in a separate process ‘python
main.py’ which launches a separate instance of Pycraft before we then close the current instance.

e Args:

— platform (str): This string tells the subroutine which operating system we are using. This is needed for OS

specific operations.

— base_folder (str): This string is a file path to the resources for Pycraft on your device.

* Keyword Args:

54

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

— None
e Qutput:

— None
settings_gui

This subroutine is in charge of rendering the settings menu and applying all changes to their corresponding variables
throughout Pycraft.

* Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUIs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
* Output:

— None

3.46 settings_utils

3.46.1 draw_setting_elements

create_information_message

3.47 setup

3.48 shader _utils

3.48.1 load_programs
load_program_text

load_program_files

3.49 shadow_mapping_utils

3.49.1 shadowmapping_mathematics

compute_celestial_entities

3.46. settings_utils 55

Pycraft’s Documentation, Release 9.5.7

compute_shadows

3.50 slider_utils

3.50.1 draw_setting_elements

draw_slider
3.51 sound _utils

3.51.1 play_sound

play_inventory_sound
play_click_sound
play_footsteps_sound
play_ambient_sound
play_thunder_sound

play_rain_sound

3.52 startup_animation

3.52.1 generate_startup_gui
This class is in charge of running the startup menu and also creating a thread that checks Pycraft’s directory for required
resources.
e Args:
— None
» Keyword Args:

— None

init

This subroutine is in charge of running the startup menu and also creating a thread that checks Pycraft’s directory for
required resources. This GUI runs before the theme decision menu, so if the user hasn’t already set a theme then the
startup animation will default to default. (The default theme for Pycraft is ‘dark’).

o Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

* Keyword Args:

— None

56 Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

* Output:

— None

startup_gui

This subroutine is in charge of running the startup menu and also creating a thread that checks Pycraft’s directory for
required resources. This GUI runs before the theme decision menu, so if the user hasn’t already set a theme then the
startup animation will default to default. (The default theme for Pycraft is ‘dark’).

* Args:

— self (dict): This is used by Pycraft as a way of storing it’s current configuration and behaviour and is required
by most GUISs. Its use should be reduced where possible for readability reasons.

* Keyword Args:
— None
* Output:

— None

3.53 text utils

3.53.1 installer_text
create_text

3.53.2 text_formatter
format_text

3.53.3 generate_text
load_quick_text

3.53.4 text_wrap

blit_text

3.54 theme_gui

3.54.1 create_theme_selection_menu

get_theme_gui
3.55 theme _utils

3.55.1 determine_theme_colours

3.53. text utils 57

Pycraft’s Documentation, Release 9.5.7

get_colors

3.56 threading_utils

3.56.1 pycraft_core_threads
general_threading_utility

adaptive_mode

3.57 tkinter_utils

3.57.1 tkinter_info

get_permissions

create_tkinter_window
3.57.2 tkinter_installer

create_display
3.58 toggle utils

3.58.1 draw_setting_elements

draw_toggle

3.59 translation_utils

3.59.1 translation_caching

write_cache

read_cache
3.59.2 string_translator
change_language

3.60 uninstall

3.60.1 begin_uninstall

uninstall_screen_one

58

Chapter 3. Module Breakdown

Pycraft’s Documentation, Release 9.5.7

get_confirmation
remove_all
render_progress_bar
remove_but_keep_save
render_progress_bar
remove_but_leave
render_progress_bar

finish_uninstall
3.61 update

3.61.1 begin_update
update_screen_one
update_screen_two
update_options
render_progress_bar

finished_update

3.62 weather_utils

3.62.1 compute_weather

compute_cloud_model
generate_perlin_noise_2d
f

compute_cloud_noise
blend_weather

mix

compute_weather

3.61. update

59

Pycraft’s Documentation, Release 9.5.7

60

Chapter 3. Module Breakdown

CHAPTER
FOUR

FREQUENTLY ASKED QUESTIONS

4.1 Introduction

Welcome to Pycraft’s new dedicated section to help with any questions and problems you may have about Pycraft. This
is by no means a complete guide, and neither is it finished, however we hope that we can help you fix any problems
and questions you may have. If we have missed anything, then this section is constantly being updated and adjusted,
so let us know and we will happily make improvements based on your feedback! Please also note that, especially for
the tutorial section, there will be dedicated tutorials for different platforms, currently we support Windows 10/11 and
Linux (Ubuntu is our distro of choice for testing Pycraft on Linux) however if you have a problem on another platform,
and wish to share how you fixed it, let us know and we will happily include that here as well for the convenience of
others!

4.2 Frequently seen problems

Sometimes, when running Pycraft - usually immediately after installing it - you can occasionally run into problems,
wether thats outdated versions of Python, Tkinter not being installed, or something isn’t quite right with your drivers.
Now sometimes, we will admit, the bug has more to do with Pycraft than anything else on your system, but over time we
have been adapting and improving our debugging and testing regimes and this is becoming less of a significant factor.
In 2021, we managed to comfortably half the amount of bugs we discovered in released versions of Pycraft, and did
nearly that again in 2022. Now, this means that, whilst there is still more we could do - and are looking at doing - there
are still sometimes problems that we cannot address through Pycraft. Some of these bugs can be related to platforms,
and may only be present on Linux rather than Windows, and then only on some versions of Linux with some hardware
configurations. Therefore these tutorials will try and explain the problem in detail, as well as what we believe the
solution to be, and will occasionally discuss things we are planning on doing to address there problems although again,
not all problems we can address through Pycraft. Now, these tutorials are designed to be as user friendly as possible,
and include specific solutions to some problems that might vary based on your platform or Operating System.

61

	Introduction
	About
	Setup
	Installing the project from GitHub (Method 1)
	Installing the project from GitHub (Method 2)
	Installing from PyPi (preferred)
	Installing using Pipenv

	Running The Program
	Credits
	With thanks to;

	Uncompiled Pycraft Dependencies
	Changes
	Understanding the release notes
	Input mapping
	Keyboard
	Mouse

	Our Update Policy
	Version Naming
	Releases
	Other Sources
	Final Notices

	Formatting Guide
	Introduction
	Docstring Formatting Guide
	Module Formatting Guide
	Class Formatting Guide
	Subroutine Formatting Guide
	Variable and Constant Formatting Guide
	Shader Formatting Guide
	Directory Formatting Guide

	Module Breakdown
	OpenGL_window_benchmark
	run_opengl_window_benchmark
	setup
	start

	__init__
	achievements
	generate_achievements
	achievements_gui

	benchmark
	generate_benchmark
	benchmark_gui

	benchmark_utils
	close_benchmark
	exit_benchmark

	start_benchmark
	generate_benchmark
	generate_opengl_benchmark

	clear_benchmark
	run_spacer

	blank_window_benchmark
	run_blank_window_benchmark
	start

	button_utils
	draw_setting_elements
	draw_multi_buttons
	draw_buttons

	camera_utils
	compute_camera
	camera_move_state
	get_camera_values
	compute_camera_dir

	caption_utils
	generate_captions
	get_loading_caption
	get_normal_caption
	set_OpenGL_caption

	character_designer
	generate_character_designer
	character_designer_gui

	credits
	generate_credits
	credits_gui

	custom_theme_utils
	draw_setting_elements
	draw_custom_theme_options

	directory_utils
	draw_setting_elements
	draw_directory_structure

	display_utils
	display_functionality
	core_display_functions

	display_utils
	update_display
	set_display
	generate_min_display
	get_display_location
	get_play_status

	display_animations
	fade_in
	fade_out

	drawing_utils
	draw_rose
	create_rose

	generate_graph
	create_devmode_graph

	drawing_window_benchmark
	run_drawing_window_benchmark
	start

	dropdown_utils
	draw_setting_elements
	draw_dropdown

	error_utils
	generate_error_screen
	error_screen

	extended_benchmark
	Loadbenchmark
	run

	file_utils
	delete_files
	clear_temporary_files

	scan_folder
	search_files

	fix_installer
	set_install_location
	get_install_location

	pycraft_config_utils
	read_input_key
	read_main_save
	repair_lost_save
	save_pycraft_config

	game_engine
	create_game_engine
	start
	game_engine

	home
	generate_home
	create_banner
	home_gui

	image_utils
	convert_image
	pil_image_to_surface
	surface_to_pil_image

	pygame_image_extensions
	display_to_string

	transparency_effects
	create_background_image

	tkinter_installer
	open_img

	input_utility
	identify_hex
	identify_text
	identify_rgb

	install
	begin_install
	install_screen_one
	button_check
	install_screen_two
	get_dir
	install_screen_three
	render_progress_bar
	install_screen_four
	desktop_is_checked
	start_is_checked
	toggle_release_notes
	on_exit

	installer_home
	installer_home
	start
	get_version

	installer_main
	run_installer
	__init__
	Initialize

	installer_utils
	get_installer_data
	get_data

	core_installer_functionality
	close
	home
	outdated_detector

	file_manipulation
	move_files
	download_and_install
	search_files
	remove_files

	integrated_installer_utils
	integrated_installer
	check_versions

	check_connection
	test

	inventory
	generate_inventory
	__init__
	inventory_gui

	loading_screen
	generate_load_screen
	__init__
	load

	logging_utils
	create_log_message
	update_log_information
	update_log_warning
	update_log_error

	log_file
	clear_log
	update_log

	main
	map_gui
	generate_map_gui
	__init__
	get_map_pos
	map_gui

	math_utils
	math_functions
	gl_look_at
	normalize
	compute_position
	perspective_fov
	look_at
	multiply

	compiled_math_functions
	gl_look_at
	compute_position
	normalize
	perspective_fov
	look_at
	multiply

	menu_utils
	access_other_guis
	access_gui

	particle_utils
	particles
	emit_gpu
	gen_particles
	projection

	pycraft_main
	startup
	__init__

	Initialize
	menu_selector
	start
	QueryVersion
	start

	pycraft_startup_utils
	startup_test
	test_for_resource
	resource_not_found
	pycraft_self_test
	pycraft_resource_test

	registry_utils
	generate_registry
	registry

	remapping_utils
	draw_setting_elements
	draw_remap_function

	save_menu
	generate_save_menu
	save_menu_gui

	seasonal_events_utils
	configure_seasonal_event
	is_seasonal_event

	setting_preset_utils
	presets
	update_profile

	settings
	generate_settings
	restart_function
	settings_gui

	settings_utils
	draw_setting_elements
	create_information_message

	setup
	shader_utils
	load_programs
	load_program_text
	load_program_files

	shadow_mapping_utils
	shadowmapping_mathematics
	compute_celestial_entities
	compute_shadows

	slider_utils
	draw_setting_elements
	draw_slider

	sound_utils
	play_sound
	play_inventory_sound
	play_click_sound
	play_footsteps_sound
	play_ambient_sound
	play_thunder_sound
	play_rain_sound

	startup_animation
	generate_startup_gui
	init
	startup_gui

	text_utils
	installer_text
	create_text

	text_formatter
	format_text

	generate_text
	load_quick_text

	text_wrap
	blit_text

	theme_gui
	create_theme_selection_menu
	get_theme_gui

	theme_utils
	determine_theme_colours
	get_colors

	threading_utils
	pycraft_core_threads
	general_threading_utility
	adaptive_mode

	tkinter_utils
	tkinter_info
	get_permissions
	create_tkinter_window

	tkinter_installer
	create_display

	toggle_utils
	draw_setting_elements
	draw_toggle

	translation_utils
	translation_caching
	write_cache
	read_cache

	string_translator
	change_language

	uninstall
	begin_uninstall
	uninstall_screen_one
	get_confirmation
	remove_all
	render_progress_bar
	remove_but_keep_save
	render_progress_bar
	remove_but_leave
	render_progress_bar
	finish_uninstall

	update
	begin_update
	update_screen_one
	update_screen_two
	update_options
	render_progress_bar
	finished_update

	weather_utils
	compute_weather
	compute_cloud_model
	generate_perlin_noise_2d
	f
	compute_cloud_noise
	blend_weather
	mix
	compute_weather

	Frequently Asked Questions
	Introduction
	Frequently seen problems

